zigya tab
In a potentiometer arrangement, a cell of emf 1.25 V gives a balance point at 35.0 cm length of the wire. If the cell is replaced by another cell and the balance point shifts to 63.0 cm, what is the emf of the second cell?

Given, Emf of cell, E1 = 1.25 V
Balance point is obtained at, l1 = 35 cm
When, the cell is replaced by another cell 
New balance point is, l= 63 cm
Emf of the second cell can be found out using the relation,
                       E2E1 = l2l1

Now, substituting values we get,

E21.25 = 6335 
 E2 = 1.25 × 6335V          = 2.25 volt
                         

627 Views

The number density of free electrons in a copper conductor is 8.5 x 1028 m–3. How long does an electron take to drift from one end of a wire 3.0 m long to its other end? The area of cross-section of the wire is 2.0 x 10–6 m2 and it is carrying a current of 3.0 A.

Given,
Number density of electrons, n = 8.5 x 1028 m–3  Current carried by the wire, I = 3.0 A
Area of cross-section of the wire, A = 2.0 x 10–6 m2
Length of the wire, l = 3.0 m
Charge on electron, e = 1.6 x 10–19 C 

Using the formula for Drift velocity  νd = IneA= 38.5 × 1028 × 1.6 × 10-19 × 2.0 × 10-6m s-1= 1.103 × 10-4 m s-1 

Therefore,
Time taken by an electron to drift from one end to another end is,

t =lνd   = 3.01.103 × 10-4 s = 2.72 × 104s  ( 7.5 h).

212 Views

The earth's surface has a negative surface charge density of 10–9 C m–2. The potential difference of 400 kV between the top of the atmosphere and the surface results (due to the low conductivity of the lower atmosphere) in a current of only 1800 A over the entire globe. If there were no mechanism of sustaining atmospheric electric field, how much time (roughly) would be required to neutralise the earth's surface? (This never happens in practice because there is a mechanism to replenish electric charges, namely the continual thunderstorms and lightning in different parts of the globe.) (Radius of earth = 6.37 x 106m).

Given,
Surface charge density of earth's surface = 10–9 C/m2 
Current flowing across the surface of earth, I = 1800 A
The radius of earth,r= 6370 km = 6.37 x 106 m

Charge on entire surface of the earth, q= σ.A

Area of earth's surface, A = 4πr2

This implies, 
q=4π (6.37 x 106)2 x 10–9 C 

Using the formula , I=qt we get,
                           
                           t=qI 
Therefore,
Time required for the flow of entire charge is,

= 4×3.14×6.37 × 1062 × 10-91800 = 283 seconds.

324 Views

Advertisement

Determine the current in each branch of the network shown in figure.


Applying Kirchhoff’s second law to the mesh ABDA
– 10I1 – 5Ig + (I – I1) 5 = 0
or 3I1 – I + Ig = 0 ...(i)

Applying Kirchhoff’s second law to the mesh ABDA– 10I1 – 5Ig 
Again, applying Kirchhoff’s second law to the mesh BDCB,
– 5Ig – 10(1 – Il + Ig) + 5(I1 – Ig) = 0
or 3I1 – 21 – 4Ig = 0 ...(ii)
Applying Kirchhoff’s second law to the mesh ABCEA,
– 10I1 – 5(I1 – Ig) –10I + 10 = 0
or 3I1 + 2I – Ig = 2 ...(iii)
Adding (i) and (iii), we get
6I1 + I = 2 ...(iv)
Multiplying (i) by 4 and adding in (ii), we get
15I1 – 6I0 = 0 ...(v)
Solving equations (iv) and (v), we get
I14 over 17 straight A space equals space 0.235 space straight A
So, current in branch AB is 0.235 A.
Putting the value of I1 in equation (v) and simplifying, we get
Total current,                    straight I space equals space 10 over 17 space equals space 0.588 space straight A
Putting the values of I and I1 in equation (iii) and simplifying, we get
straight I subscript straight g space equals space 2 over 17 straight A space equals space minus 0.118 space straight A
The negative sign indicates that the direction of current is opposite to that shown in Fig. above.
So, current in branch BD is “– 0.118 A”.
Current in branch BC is (I1 - Ig) i.e.,  4 over 17 minus open parentheses negative 2 over 17 close parentheses
i.e.,  6 over 17 space or space 0.353 space straight A.
Current in branch AD is (I – I1)
i.e.,  open parentheses 10 over 17 minus 4 over 17 close parentheses straight A i.e.,  6 over 17 straight A  or 0.353 A
Current in branch DC is (I1 – I1 + Ig)
i.e., 6 over 17 plus open parentheses negative 2 over 17 close parentheses straight A or  4 over 17 straight A  or  0.235 A


443 Views

Advertisement
Six lead-acid type of secondary cells each of emf 2.0 V and internal resistance 0.015 Ω are joined in series to provide a supply to a resistance of 8.5 Ω. What are the current drawn from the supply and its terminal voltage?

Given,
Emf of secondary cells, E = 2.0 V
Internal resistance of cell, r= 0.015 Ω 
Number of secondary cells, n=6
External resistance, R = 8.5 Ω
               
Current drawn from the supply, I = I = nER+nr                                               
                                                = 6 × 2.08.5 +6 × 0.015= 1.4 A

And, terminal voltage of the supply is, V=IR   
                                                        = 1.4 × 8.5 = 11.9 V

277 Views

Advertisement